Elevated CXCL1 triggers dopaminergic neuronal loss in the substantia nigra of C57BL/6J mice: Evaluation of a novel Parkinsonian mouse model.

CXCL1 升高可导致 C57BL/6J 小鼠黑质多巴胺能神经元丢失:一种新型帕金森病小鼠模型的评估

阅读:20
作者:Ma Xi-Zhen, Jia Guo-Rui, Li Meng-Yu, Zhang Sheng-Han, Wang Zhao-Xin, Song Ning, Liu Ying-Juan, Xie Jun-Xia
Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease (PD), supporting the "body-first" hypothesis. However, there remains a notable absence of PD-specific animal models induced by inflammatory cytokines. This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1, identified in our previous research. The involvement of CXCL1 in PD pathogenesis was validated using subacute and chronic MPTP-induced mouse models. Based on these findings, 2-month-old C57BL/6J mice were intravenously administered CXCL1 (20 ng/kg/day) for 2 weeks (5 days per week), successfully replicating motor deficits and pathological alterations in the substantia nigra observed in the chronic MPTP model. These results demonstrate the potential of CXCL1-induced inflammation as a mechanism for PD modeling. The model revealed activation of the PPAR signaling pathway in CXCL1-mediated neuronal damage by CXCL1. Linoleic acid, a PPAR-γ activator, significantly mitigated MPTP- and CXCL1-induced toxicity and reduced serum CXCL1 levels. In addition, the CXCL1-injected mouse model shortened the timeline for developing chronic PD mouse model to 2 weeks, offering an efficient platform for studying inflammation-driven processes in PD. The findings provide critical insights into the inflammatory mechanisms underlying PD and identify promising therapeutic targets for intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。