HO-1 Suppression by Co-Culture-Derived IL-6 Alleviates Ferritinophagy-Dependent Oxidative Stress to Potentiate Myogenic Differentiation.

共培养产生的IL-6抑制HO-1可减轻铁蛋白自噬依赖性氧化应激,从而增强肌源性分化

阅读:12
作者:Zhang Mengyuan, Liu Siyu, Wang Yongheng, Shan Shan, Cang Ming
Fibro-adipogenic progenitor cells (FAPs) support muscle tissue homeostasis, regulate muscle growth, injury repair, and fibrosis, and activate muscle progenitor cell differentiation to promote regeneration. We aimed to investigate the effects of co-culturing FAPs with muscle satellite cells (MuSCs) on myogenic differentiation. Proteomic profiling of co-culture supernatants identified significant DCX, IMP2A, NUDT16L1, SLC38A2, and IL-6 upregulation. Comparative transcriptomics of mono-cultured versus co-cultured MuSCs revealed differential expression of oxidative stress-related genes (HMOX1, ALOX5, GSTM3, TRPM2, PADI1, and CTSL). Pathway enrichment analyses highlighted cell cycle regulation, TNF signaling, and ferroptosis. Gene ontology analysis of MuSCs indicated significant gene enrichment in myosin-related components. Combined transcriptomic and proteomic analyses demonstrated HO-1 downregulation at the transcriptional and translational levels, with altered pathways being predominantly related to myosin filament, muscle system process, and muscle contraction cellular components. HO-1 knockdown reduced intracellular iron accumulation in MuSCs, suppressing iron-dependent autophagy. This alleviated oxidative stress and promoted myogenic differentiation. Exogenous IL-6 (0.1 ng/mL) downregulated HO-1 expression, initiating an identical regulatory cascade, while HO-1 overexpression reversed the IL-6-mediated reduction in the expression of the autophagy markers LC3 and ATG5, suppressing myogenic enhancement. This establishes the co-culture-induced IL-6/HO-1 axis as a core regulator of iron-dependent oxidative stress and autophagy during myogenic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。