DPF2 reads histone lactylation to drive transcription and tumorigenesis.

DPF2 读取组蛋白乳酸化以驱动转录和肿瘤发生

阅读:19
作者:Zhai Guijin, Niu Ziping, Jiang Zixin, Zhao Fei, Wang Siyu, Chen Chen, Zheng Wei, Wang Aiyuan, Zang Yong, Han Yanpu, Zhang Kai
Lysine lactylation (Kla) is a new type of histone mark implicated in the regulation of various functional processes such as transcription. However, how this histone mark acts in cancers remains unexplored due in part to a lack of knowledge about its reader proteins. Here, we observe that cervical cancer (CC) cells undergo metabolic reprogram by which lactate accumulation and thereby boosts histone lactylation, particularly H3K14la. Utilizing a multivalent photoaffinity probe in combination with quantitative proteomics approach, we identify DPF2 as a candidate target of H3K14la. Biochemical studies as well as CUT&Tag analysis reveal that DPF2 is capable of binding to H3K14la and colocalizes with it on promoters of oncogenic genes. Notably, disrupting the DPF2-H3K14la interaction through structure-guided mutation blunts those cancer-related gene expression along with cell survival. Together, our findings reveal DPF2 as a bona fide H3K14la effector that couples histone lactylation to gene transcription and cell survival, offering insight into how histone Kla engages in transcription and tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。