Radiofrequencies have shown efficacy in addressing skin aging. Despite their effectiveness, few studies have explored how radiofrequencies affect the skin transcriptome. This study utilized mouse models divided into two age groups (four-month-old and one-year-old mice) to assess the impact of a radiofrequency device on skin collagen and elastin. A combination of histological analysis, Western blot analysis, real-time PCR and transcriptome sequencing was employed. Histological analysis revealed significant increases in dermis thickness and collagen fiber volume following radiofrequency treatment in both age groups. Quantitative PCR and Western blot analysis indicated that the levels of collagen-related genes and proteins were higher in the four-month-old group. Transcriptome sequencing identified 465 and 1867 differentially expressed genes (DEGs) in the skin of the 4-month-old mice and 1-year-old mice, respectively. GO and KEGG analyses elucidated the molecular mechanisms, revealing that the interleukin-17 and tumor necrosis factor signaling pathways may play crucial roles in collagen regeneration induced by radiofrequencies. Additionally, decreased expression of matrix metalloproteinase-9 and increased expression of the transcription factor Fos were identified as potential biomarkers of collagen regeneration. Immunofluorescence and immunohistochemistry staining demonstrated that radiofrequencies activate fibroblasts and inhibit macrophage alternative activation in the skin. This study identifies key genes and biological pathways involved in radiofrequency treatment and provides a foundation for a deeper understanding of the molecular mechanisms underlying collagen regeneration facilitated by radiofrequencies.
Transcriptional Study of Radiofrequency Device Using Experimental Mouse Model.
利用实验小鼠模型对射频装置进行转录组研究
阅读:4
作者:Li Xiaofeng, Wang Zheng, Li Xiaoman, Fan Xiaofeng, Lu Xinyu, Li Yanan, Pan Yehua, Zhu Ziyan, Zhu Mingxi, Li Wei, Chan Leo, Yu Suyun, Pan Yanhong, Wu Yuanyuan
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 7; 26(9):4460 |
| doi: | 10.3390/ijms26094460 | 种属: | Mouse |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
