Ovarian aging typically precedes the decline of other organ systems, yet its molecular mechanisms remain poorly understood. Glycosylation as one of the most important protein modifications has been especially unexplored in this context. Here, we present the first high-resolution glycoproteomic landscape of aging mouse ovaries, uncovering site-specific N-glycan signatures across subcellular components such as high proportions of complex glycans, core fucosylation, and LacdiNAc branches at the zone pellucida. We report three major glycosylation alterations in aged ovaries: the frequently changed core-fucosylation associated with cell adhesion and immune responses, the decreased LacdiNAc glycans on zona pellucida (ZP) responsible for fertility decline, and the increased sialylated glycans modified by Neu5Ac and Neu5Gc playing different roles in immune activation and responses. Integrated multi-omic analyses further highlight the unique role of glycosylation, distinct from phosphorylation, in regulating key signaling pathways, antigen processing and presentation, complement coagulation cascades, ROS biosynthetic and metabolic processes, as well as cell death. This study offers a novel glycobiological perspective on ovarian aging, broadening our understanding of its molecular mechanisms beyond traditional multi-omic approaches.
A high-resolution N-glycoproteome landscape of aging mouse ovary.
小鼠卵巢衰老过程中高分辨率N-糖蛋白组图谱
阅读:6
作者:Wu Yongqi, Zhang Zhida, Xu Yongchao, Zhang Yingjie, Chen Lin, Zhang Yiwen, Hou Ke, Yang Muyao, Jin Zhehui, Cai Yinli, Zhao Jiayu, Sun Shisheng
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2025 | 起止号: | 2025 Apr;81:103584 |
| doi: | 10.1016/j.redox.2025.103584 | 种属: | Mouse |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
