With the increasing prevalence of high-fat diets (HFD) in aquaculture practices, the detrimental effects of HFD on farmed fish have garnered significant attention. Creatine has emerged as a promising green feed additive for aquaculture species; however, its potential role in mitigating the negative impacts of HFD remains poorly understood. To address this knowledge gap, the present study was designed to investigate the protective effects of dietary creatine supplementation on HFD-induced hepatic lipid metabolism disorders and muscle quality deterioration in juvenile grass carp (Ctenopharyngodon idella). Three experimental diets were formulated: a control diet (5.20% lipid, control), a HFD (8.11% lipid, HFD), and a HFD supplemented with 2% creatine (HFDâ+âcreatine). Juvenile grass carp (initial weight: 4.12â±â0.02âg) were randomly allocated into nine 300-L indoor tanks and fed the experimental diets for 8 weeks. The key findings of this study revealed that (1) Dietary creatine supplementation significantly ameliorated the adverse effects of HFD on growth performance and feed utilization efficiency in juvenile grass carp. (2) Creatine supplementation improved muscle quality parameters in juvenile grass carp. (3) Dietary creatine attenuated HFD-induced hepatic lipid accumulation through enhanced fatty acid β-oxidation, which was mediated by mfn2-dependent mitochondrial fusion. Notably, this study elucidates a novel molecular mechanism whereby creatine activates mitochondrial fusion through the binding of pparα transcription factor to specific sites on the mitofusin 2 (Mfn2) gene promoter. To our knowledge, this is the first comprehensive investigation from a multi-organ/tissue perspective combined with mitochondrial dynamics analysis, providing valuable insights for developing effective nutritional strategies to counteract HFD-induced adverse effects in farmed fish through creatine supplementation.
Creatine Ameliorates the Adverse Effects of High-Fat Diet on Hepatic Lipid Metabolism via Activating Mfn2-Mediated Mitochondrial Fusion in Juvenile Grass Carp.
肌酸通过激活 Mfn2 介导的线粒体融合来改善高脂饮食对幼年草鱼肝脏脂质代谢的不良影响
阅读:5
作者:Hu Nan-Jun, Feng Guang-Li, Lai Xiao-Hong, Peng Mo, Song Yu-Feng
| 期刊: | Aquaculture Nutrition | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 8; 2025:1151656 |
| doi: | 10.1155/anu/1151656 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
