A systematic mutation analysis of 13 major SARS-CoV-2 variants.

对 13 种主要 SARS-CoV-2 变异株进行系统突变分析

阅读:5
作者:Bai Han, Zhang Xuan, Gong Tian, Ma Junpeng, Zhang Peng, Cai Zeqiong, Ren Doudou, Zhang Chengsheng
SARS-CoV-2 evolves constantly with various novel mutations. Due to their enhanced infectivity, transmissibility and immune evasion, a comprehensive understanding of the association between these mutations and the respective functional changes is crucial. However, previous mutation studies of major SARS-CoV-2 variants remain limited. Here, we performed systematic analyses of full-length amino acids mutation, phylogenetic features, protein physicochemical properties, molecular dynamics and immune escape as well as pseudotype virus infection assays among thirteen major SARS-CoV-2 variants. We found that Omicron exhibited the most abundant and complex mutation sites, higher indices of hydrophobicity and flexibility than other variants. The results of molecular dynamics simulation suggest that Omicron has the highest number of hydrogen bonds and strongest binding free energy between the S protein and ACE2 receptor. Furthermore, we revealed 10 immune escape sites in 13 major variants, some of them were reported previously, but four of which (i.e. 339/373/477/496) are first reported to be specific to Omicron, whereas 462 is specific to Epslion. The infectivity of these variants was confirmed by the pseudotype virus infection assays. Our findings may help us understand the functional consequences of the mutations within various variants and the underlying mechanisms of the immune escapes conferred by the S proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。