Luteolin Inhibited the Self-Renewal and Altered the Polarization of Primary Alveolar Macrophages.

木犀草素抑制原代肺泡巨噬细胞的自我更新并改变其极化

阅读:5
作者:Geng Aiai, Chen Shanze, Ren Laibin, Zhao Xueyi, Pei Tianli, Jia Bo, Gong Daoyin
Pure plant extract luteolin has been demonstrated to possess numerous biological and immunological effects. However, how luteolin affects mice alveolar macrophages' self-renewal and polarization closely related to inflammatory and immunomodulatory is still unknown. In our study, the transcriptomic analysis showed that several self-renewal-related pathways in luteolin-pretreated alveolar macrophages were inhibited compared to the granulocyte-macrophage colony-stimulating factor (GM-CSF)-treated group. Ki-67 staining and EdU assay indicated that luteolin inhibited GM-CSF-induced alveolar macrophage proliferation. Moreover, GM-CSF-induced expressions of c-Myc and KLF4 were significantly suppressed by luteolin at transcriptional and protein levels. Besides, we found that luteolin promoted M1 macrophage polarization induced by LPS plus IFN-γ. At the same time, it inhibited M2 macrophage polarization induced by IL-4 in both alveolar and bone marrow-derived macrophages by detecting macrophage polarization-related gene expressions at mRNA and protein levels. We found that luteolin inhibited self-renewal and altered the polarization of primary alveolar macrophages. Taken together, our data will aid in a better understanding of the immunomodulatory effects of luteolin on the primary alveolar macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。