BACKGROUND: Radiotherapy is an effective therapeutic approach widely used clinically in non-small cell lung cancer (NSCLC), but radioresistance remains a major challenge. New and effective radiosensitizing approaches are thus urgently needed. The activation of DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has become an attractive therapeutic target, but the relationship between activation of cGAS-STING pathway and radiosensitization of NSCLC cells remains unknown. METHODS: Considering low expression of cGAS-STING pathway genes in NSCLC, including STING, we used an activator (STING agonist, dimeric amidobenzimidazole [diABZI]) of cGAS-STING pathway and increased activation factor (DNA double strand breaks) of cGAS-STING pathway to respectively reinforce the activation of cGAS-STING pathway in NSCLC cells. We then investigated the effect of increased activation of cGAS-STING pathway on the proliferation of H460 and A549 cells by CCK-8 and colony formation assays, and revealed the underlying mechanism. RESULTS: We found that both diABZI and the increased DNA double strand breaks could sensitize NSCLC cells to irradiation. Mechanically, our results showed that the increased activation of cGAS-STING pathway enhanced radiosensitivity by promoting apoptosis in NSCLC cells. CONCLUSION: Taken together, we concluded that diABZI could be used as a radiosensitizer in NSCLC cells, and targeting the activation of cGAS-STING pathway has a potential to be a new approach for NSCLC radiosensitizing.
Increased activation of cGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells.
cGAS-STING通路激活增强可提高非小细胞肺癌细胞的放射敏感性
阅读:5
作者:Xue Aiying, Shang Yue, Jiao Peng, Zhang Songling, Zhu Changchun, He Xin, Feng Guoxing, Fan Saijun
| 期刊: | Thoracic Cancer | 影响因子: | 2.300 |
| 时间: | 2022 | 起止号: | 2022 May;13(9):1361-1368 |
| doi: | 10.1111/1759-7714.14400 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
