Targeting SUMO2 reverses aberrant epigenetic rewiring driven by SS18::SSX fusion oncoproteins and impairs sarcomagenesis.

靶向 SUMO2 可逆转由 SS18::SSX 融合癌蛋白驱动的异常表观遗传重编程,并损害肉瘤发生

阅读:5
作者:Iyer Rema, Deshpande Anagha, Pedgaonkar Aditi, Bala Pramod Akula, Kim Taehee, Brien Gerard L, Finlay Darren, Vuori Kristiina, Soragni Alice, Wetterstein Hiromi I, Murad Rabi, Deshpande Aniruddha J
Synovial sarcoma (SySa) is an aggressive soft tissue sarcoma with an urgent need to develop targeted therapies. Here, we exploited specific vulnerabilities created by transcriptional rewiring by the fusion protein SS18::SSX, the sole oncogenic driver in SySa. To uncover genes that are selectively essential for the fitness of SySa cells compared to other tumor cell lines, we mined  the Cancer-Dependency-Map data. Targeted CRISPR library screening of SySa-selective candidates revealed that the small ubiquitin-like modifier 2 (SUMO2) constituted one of the strongest dependencies both in vitro and in vivo. TAK-981, a clinical-stage small-molecule SUMO2 inhibitor potently suppressed growth and colony-forming ability. Transcriptomic profiling showed that SUMO2 inhibition elicited a profound reversal of the gene expression program orchestrated by SS18::SSX fusion. Further, genetic depletion or SUMO2 inhibition reduced global expression levels and chromatin occupancy of the SS18::SSX fusion protein with a concomitant reduction in histone 2A lysine 119 ubiquitination (H2AK119ub), an epigenetic mark facilitating SySa pathogenesis. Taken together, our study identifies SUMO2 as a novel, selective vulnerability in synovial sarcoma, suggesting new avenues for targeted treatment of soft tissue tumors.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。