Autophagy related genes (ATGs) play essential roles in maintaining cellular functions, although biological and pathological alterations of ATG phenotypes remain poorly understood. To address this knowledge gap, we utilized the single-cell sequencing technology to elucidate the transcriptomic atlas of ATGs in lung diseases, with a focus on lung epithelium and lymphocytes. This study conducted a comprehensive investigation into RNA profiles of ATGs in the lung tissues obtained from healthy subjects and patients with different lung diseases through single-cell RNA sequencing (scRNA-seq), including COVID-19 related acute lung damage, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), systemic sclerosis (SSC), and lung adenocarcinoma (LUAD). Our findings revealed significant variations of ATGs expression across lung epithelial cell subsets, e.g., over-expression of MAPK8 in basal cells, ATG10 in club cells, and BCL2 in a goblet cell subset. The changes of autophagy-related pathways varied between lung epithelial and lymphocyte subsets. We identified the disease-associated changes in ATG expression, including significant alterations in BCL2, BCL2L1, PRKCD, and PRKCQ in inflammatory lung diseases (COPD and IPF), and MAP2K7, MAPK3, and RHEB in lung cancer (LUAD), as compared to normal lung tissues. Key ligand-receptor pairs (e.g., CD6-ALCAM, CD99-CD99) and signaling pathways (e.g., APP, CD74) might serve as biomarkers for lung diseases. To evaluate ATGs responses to external challenges, we examined ATGs expression in different epithelial cell lines exposed to cigarette smoking extract (CSE), lysophosphatidylcholine (lysoPC), lipopolysaccharide (LPS), and cholesterol at various doses and durations. Notable changes were observed in CFLAR, EIF2S1, PPP2CA, and PPP2CB in A549 and H1299 against CSE and LPS. The heterogeneity of ATGs expression was dependent on cell subsets, pathologic conditions, and challenges, as well as varied among cellular phenotypes, functions, and behaviors, and the severity of lung diseases. In conclusion, our data might provide new insights into the roles of ATGs in epithelial biology and pulmonary disease pathogenesis, with implications for disease progression and prognosis.
Transcriptomic profiles of single-cell autophagy-related genes (ATGs) in lung diseases.
肺部疾病中单细胞自噬相关基因(ATG)的转录组谱
阅读:5
作者:Liu Xuanqi, Zhang Linlin, Li Liyang, Hou Jiayun, Qian Mengjia, Zheng Nannan, Liu Yifei, Song Yuanlin
| 期刊: | Cell Biology and Toxicology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 7; 41(1):40 |
| doi: | 10.1007/s10565-025-09990-w | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
