Deep learning-based prediction of chemical accumulation in a pathogenic mycobacterium.

基于深度学习的致病性分枝杆菌化学物质积累预测

阅读:11
作者:Sullivan Mark R, Rubin Eric J
Drugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates. However, a comprehensive understanding of which chemical structures promote or prevent drug uptake is currently lacking. Here we use liquid chromatography-mass spectrometry to measure accumulation of 1528 approved drugs in Mycobacterium abscessus, a highly drug-resistant, opportunistic pathogen. We find that simple chemical properties fail to effectively predict drug accumulation in mycobacteria. Instead, we use our data to train deep learning models that predict drug accumulation in M. abscessus with high accuracy, including for chemically diverse compounds not included in our original drug library. We find that differential drug uptake is a critical determinant of the efficacy of drugs currently in development and can identify compounds which accumulate well and have antibacterial activity in M. abscessus. These predictive algorithms can be an important complement to chemical synthesis and accumulation assays in the evaluation of drug candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。