Suv39h1 Regulates Phenotypic Modulation of Smooth Muscle Cells and Contributes to Vascular Injury by Repressing HIC1 Transcription.

Suv39h1 调节平滑肌细胞的表型调控,并通过抑制 HIC1 转录导致血管损伤

阅读:21
作者:Yang Yuyu, Zhang Qiumei, Liu Shuai, Yuan Haihang, Wu Xiaoping, Zou Yi, Zhang Yuanyuan, Guo Junli
BACKGROUND: Vascular smooth muscle cells (VSMCs), in response to a myriad of injurious stimuli, switch from a contractile state to a proliferative/migratory state in a process known as phenotypic modulation. Phenotypic modulation of VSMCs contributes to neointima formation and underscores a host of vascular pathologies, including atherosclerosis. In the present study, we investigated the involvement of Suv39h1 (suppressor of variegation 3-9 homolog 1), a lysine methyltransferase, in this process. METHODS: Suv39h1(f/f) mice were crossbred to the Myh11-Cre(ERT2) mice to generate VSMC-restricted Suv39h1 knockout mice (conditional knockout). Vascular injury was created by carotid artery ligation. Cellular transcriptome was evaluated by RNA sequencing and cleavage under targets and tagmentation with deep sequencing. RESULTS: Suv39h1 upregulation was observed in animal and cell models of phenotypic modulation. Consistently, Suv39h1 silencing restored expression of contractile genes and attenuated proliferation/migration in VSMCs exposed to PDGF (platelet-derived growth factor)-BB. Importantly, Suv39h1 deletion significantly ameliorated neointima formation in mice in both the carotid artery injury model and the femoral artery injury model. Importantly, a small-molecule Suv39h1 inhibitor F5446 suppressed phenotypic modulation in vitro and mitigated vascular injury in mice. RNA sequencing identified HIC1 (hypermethylated in cancer 1) as a novel target for Suv39h1. HIC1 expression was repressed by Suv39h1 during VSMC phenotypic modulation, whereas HIC1 overexpression antagonized neointima formation in mice. Integrated transcriptomic analysis indicated that HIC1 might regulate VSMC phenotypic modulation by activating Jag1 (Jagged 1) transcription. CONCLUSIONS: Our data suggest that Suv39h1 is a novel regulator of vascular injury and can be targeted for intervention of restenosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。