Mechanochemically Scaled-Up Alpha Cyclodextrin Nanosponges: Their Safety and Effectiveness as Ethylene Scavenger

机械化学放大的 α 环糊精纳米海绵:其作为乙烯清除剂的安全性和有效性

阅读:5
作者:David Rupérez, Nicolás Gracia-Vallés, Eva Clavero, Filomena Silva, Cristina Nerín

Abstract

Aiming at the development of a greener ethylene removal alternative, the goal of this study was to scale up and ensure the safety of α-cyclodextrin nanosponges (α-CD-NS) for further use as ethylene scavengers. The solvent-free synthesis of α-CD-NS was successfully scaled up using α-cyclodextrin and N,N'-carbonyldiimidazole as cross-linkers (1:4 molar ratio) by means of mechanical alloying using a PM 100 ball mill by focusing on varying the rotation frequency, as determined by FTIR-ATR, X-ray diffraction, and TGA. α-CD-NS washing optimization was performed in water by monitoring the imidazole concentration in the washing solution through the validation of a fast and sensitive HPLC-DAD method. After 6 h at 40 °C, all imidazole was extracted, allowing a faster and less energy-dependent extraction. α-CD-NS absorbent capacity and porosity were also evaluated through BET isotherms and ethylene absorption experiments using α-CD-NS and commercially available absorbents (zeolite and bentonite) were performed by means of gas chromatography (GC) coupled to a flame ionization detector (FID). With a 93 µL h-1 kgadsorbent-1 ethylene removal capacity, α-CD-NS revealed the best ethylene scavenging activity when compared to the other absorbents, opening the doors for a safer, innovative, and eco-friendlier ethylene removal active packaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。