Morphine and other synthetic opioids are widely prescribed to treat pain. Prolonged morphine exposure can paradoxically enhance pain sensitivity in humans and nociceptive behavior in rodents. To better understand the molecular mechanisms underlying opioid-induced hyperalgesia, we investigated changes in microRNA (miRNA) composition of small extracellular vesicles (sEVs) from the serum of mice after a morphine treatment paradigm that induces hyperalgesia. We observed significant differential expression of 18 miRNAs in sEVs from morphine-treated mice of both sexes compared with controls. Several of these miRNAs were bioinformatically predicted to regulate cyclic AMP response element binding protein (CREB), a well characterized transcription factor implicated in pain and drug addiction. We confirmed the binding and repression of Creb mRNA by miR-155 and miR-10a. We tested if serum-derived sEVs from morphine-treated mice could elicit nociceptive behavior in naïve recipient mice. Intrathecal injection of 1 μg sEVs did not significantly impact basal mechanical and thermal thresholds in naïve recipient mice. However, prophylactic 1 μg sEV administration in recipient mice resulted in faster resolution of complete Freund's adjuvant-induced mechanical and thermal inflammatory hypersensitivity. Other behaviors assayed following administration of these sEVs were not impacted, including sEV-conditioned place preference and locomotor sensitization. These results indicate that morphine regulation of serum sEV composition can contribute to analgesia and suggest a potential for sEVs to be a nonopioid therapeutic intervention strategy to treat pain. SIGNIFICANCE STATEMENT: A mouse model of opioid-induced hyperalgesia was used to show that chronic morphine treatment causes differential microRNA packaging into small extracellular vesicles (sEVs) present in the serum of mice. Two of these sEV microRNAs can downregulate CREB expression, and administration of these sEVs attenuates pain hypersensitivity in recipient mice. These studies position sEVs as a potential pain therapeutic and highlight changes underlying opioid-induced hyperalgesia, shedding light on a phenomenon with unclear pathophysiology.
Morphine-induced hyperalgesia impacts small extracellular vesicle microRNA composition and function.
吗啡引起的痛觉过敏会影响小细胞外囊泡微RNA的组成和功能
阅读:23
作者:Reddy Deepa, Lin Zhucheng, Ramanathan Sujay, Luo Xuan, Pande Richa, Tian Yuzhen, Side Christine M, Barker Jacqueline M, Sacan Ahmet, Blendy Julie A, Ajit Seena K
| 期刊: | Journal of Pharmacology and Experimental Therapeutics | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Apr;392(4):103398 |
| doi: | 10.1016/j.jpet.2025.103398 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
