BACKGROUND: Osteoarthritis (OA), the most prevalent joint disorder, is characterized by a complex etiology and a lack of safe and effective therapeutic interventions. Emerging evidence suggests that immune cell dysregulation plays a pivotal role in the pathogenesis of OA. Recent advancements in high-throughput sequencing technologies, along with the integration of machine learning into medical research, have provided novel insights into the molecular mechanisms underlying various diseases. However, the specific roles and mechanisms of immune-related factors in OA remain poorly understood. This study aims to identify potential biomarkers for the diagnosis and monitoring of OA progression and to explore targeted therapeutic strategies based on key genes associated with the disease. RESULTS: WGCNA and immune infiltration analysis identified SIK1 as a core gene involved in immune regulation during the progression of OA. In vitro experiments demonstrated that AICAR, an activator of SIK1, significantly suppressed inflammatory responses by modulating glucose and lipid metabolism in macrophages. A novel nanoliposome composite hydrogel, Gel@Lipo@AICAR, has been successfully developed for the targeted delivery of AICAR. The intra-articular administration of Gel@Lipo@AICAR demonstrated excellent biosafety and therapeutic potential in mitigating the progression of OA. CONCLUSIONS: This study identifies SIK1 as a novel biomarker for diagnosing and monitoring the progression of OA. The anti-inflammatory effects of its agonist, AICAR, were validated, underscoring its role in reprogramming macrophage glucose and lipid metabolism. Furthermore, the development of Gel@Lipo@AICAR, a nanoliposome composite hydrogel, presents a promising therapeutic strategy for the treatment of OA.
Liposome-encapsulated AICAR hydrogel regulates macrophage metabolic reprogramming via SIK1 activation to alleviate osteoarthritis.
脂质体包裹的 AICAR 水凝胶通过 SIK1 激活调节巨噬细胞代谢重编程,从而缓解骨关节炎
阅读:3
作者:Fu Yong, Hou Jiahui, Yang Qinmeng, Lin Yanpeng, Rui Nie, Wang Jun, Wu Hangtian, Yu Bin
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 5; 23(1):486 |
| doi: | 10.1186/s12951-025-03543-3 | 研究方向: | 代谢 |
| 疾病类型: | 关节炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
