Study of Radiation Resistance of WO3 Microparticles under Irradiation with Heavy Kr15+ and Xe22+ Ions

重Kr15+和Xe22+离子辐照下WO3微粒的抗辐照性能研究

阅读:5
作者:Dauren B Kadyrzhanov, Artem L Kozlovskiy, Maxim V Zdorovets, Ainagul A Khametova, Dmitriy I Shlimas

Abstract

In this work, we consider the effect of irradiation with heavy Kr15+ and Xe22+ ions on the change in the structural and strength properties of WO3 microparticles, which are among the candidates for inert matrix materials. Irradiation with heavy Kr15+ and Xe22+ ions was chosen to determine the possibility of simulation of radiation damage comparable to the impact of fission fragments. During the studies, it was found that the main changes in the structural properties with an increase in the irradiation fluence are associated with the crystal lattice deformation and its anisotropic distortion, which is most pronounced during irradiation with heavy Kr15+ ions. An assessment of the gaseous swelling effect due to the radiation damage accumulation showed that a change in the ion type during irradiation leads to an increase in the swelling value by more than 8-10%. Results of strength changes showed that the most intense decrease in the hardness of the near-surface layer is observed when the fluence reaches more than 1012 ion/cm2, which is typical for the effect of overlapping radiation damage in the material. The dependences obtained for the change in structural and strength properties can later be used to evaluate the effectiveness of the use of refractory oxide materials for their use in the creation of inert matrices of nuclear fuel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。