Neuraminidase 1 Exacerbated Glycolytic Dysregulation and Cardiotoxicity by Destabilizing SIRT1 through Interactions with NRF2 and HIF1α.

神经氨酸酶 1 通过与 NRF2 和 HIF1α 相互作用,使 SIRT1 不稳定,从而加剧糖酵解失调和心脏毒性

阅读:5
作者:Gao Ting, Tang Yufeng, Zeng Tao, Wang Jie, Zhang Xiaohui, Liu Qingbo, Guan Xun, Tang Xinyu, Lu Guangping, Li Jiahao, Liu Mingrui, Zhang Dongmei, Lv Sixuan, Gu Junlian
Despite significant therapeutic advances, cumulative DOX-induced cardiotoxicity (DIC) events remain unacceptably high. Recent evidence has underscored the critical role of impaired glycolytic metabolism in cardiovascular damage. Neuraminidase 1 (NEU1), a member of the neuraminidase family, catalyzes the hydrolysis of terminal sialic acids from glycoconjugates. Here, it is aimed to characterize the role of NEU1 on defective glycolysis during DIC. Mouse models with cardiac-specific genetic modifications of Neu1, Nrf2, and Sirt1 underwent functional analyses, and RNA sequencing to clarify NEU1's role in glycolytic metabolism during DIC. It is discovered that NEU1 is highly expressed after DOX exposure and positively correlated with defective glycolysis phenotypes. Cardiomyocyte-specific deficiency of Neu1 ameliorated impaired glycolytic metabolism and DIC, whereas overexpression of Neu1 in cardiomyocytes exacerbated these pathological phenotypes. Mechanistically, the upregulation of Neu1 is attributed to HIF1α's transcriptional repression, which necessitated the collaboration of NRF2. Additionally, the C-terminal region of NEU1 physically interacted with SIRT1, facilitating its lysosomal-mediated degradation and contributing to the aberrant glycolytic phenotype. The pharmacological or genetic manipulation of NRF2 and HIF1α remarkably abolished DOX-induced NEU1 upregulation, compromised glucose metabolism, and DIC progression. Collectively, NEU1 as a key regulator of cardiac glycolysis is established, offering new therapeutic avenues for DIC through maintaining metabolic flexibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。