Intestinal mucosal barrier damage is regarded as the critical factor through which chronic unpredictable mild stress (CUMS) leads to a variety of physical and mental health problems. However, the exact mechanism by which CUMS induces intestinal mucosal barrier damage is unclear. In this study, 14, 28, and 42 d CUMS model mice were established. The indicators related to ileal mucosal barrier damage (IMBD), the composition of the ileal microbiota and its amino acid (AA) and short-chain fatty acid (SCFA) metabolic functions, and free amino acid (FAA) and SCFA levels in the ileal lumen were measured before and after each stress period. The correlations between them are analyzed to investigate how CUMS induces intestinal mucosal barrier damage in male C57BL/6 mice. With the progression of CUMS, butyric acid (BA) levels decreased (14 and 28 d) and then increased (42 d), and IMBD progressively increased. In the late CUMS stage (42 d), the degree of IMBD is most severe and positively correlated with significantly increased BA levels (p < 0.05) in the ileal lumen and negatively correlated with significantly decreased FAAs, such as aspartic, glutamic, alanine, and glycine levels (p < 0.05). In the ileal lumen, the abundance of BA-producing bacteria (Muribaculaceae, Ruminococcus, and Butyricicoccus) and the gene abundance of specific AA degradation and BA production pathways and their related enzymes are significantly increased (p < 0.05). In addition, there is a significant decrease (p < 0.05) in the abundance of core bacteria (Prevotella, Lactobacillus, Turicibacter, Blautia, and Barnesiella) that rely on these specific AAs for growth and/or are sensitive to BA. These changes, in turn, promote further colonization of BA-producing bacteria, exacerbating the over-accumulation of BA in the ileal lumen. These results were validated by ileal microbiota in vitro culture experiments. In summary, in the late CUMS stages, IMBD is related to an excessive accumulation of BA caused by dysbiosis of the ileal microbiota and its overactive AA degradation.
Gut-Microbiota-Derived Butyric Acid Overload Contributes to Ileal Mucosal Barrier Damage in Late Phase of Chronic Unpredictable Mild Stress Mice.
肠道菌群衍生的丁酸过载导致慢性不可预测轻度应激小鼠后期回肠粘膜屏障受损
阅读:5
作者:Wang Chen, Qiu Mei, Wang Shuo, Luo Jinjin, Huang Ling, Deng Qi, Fang Zhijia, Sun Lijun, Gooneratne Ravi
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 3; 25(23):12998 |
| doi: | 10.3390/ijms252312998 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
