RNA interference (RNAi) is emerging as a powerful strategy for therapeutic targeting of "undruggable" targets. However, efficacy of currently used siRNA-based therapies is often hindered by transient effects and limited modeling possibilities. Artificial microRNAs (amiRNAs or miRNA scaffolds) present a durable and precise approach to gene silencing, opening new avenues for developing long lasting targeted therapies. In this study, we engineered highly expressed primary miRNAs (pri-miRNAs) with sequence determinants known to enhance processing efficacy and precision. The resulting amiRNAs were extensively tested both in vitro and in vivo and proved to efficiently silence a target gene when virally delivered via adeno-associated virus (AAV) into mice brains. This study provides a set of novel amiRNAs with potential therapeutic application as well as a pipeline to generate and validate novel amiRNAs from endogenous pri-miRNAs.
Engineered microRNA scaffolds for potent gene silencing in vivo.
工程化microRNA支架用于体内强效基因沉默
阅读:5
作者:Militello Giuseppe, Greig Alyssa, Bi Chongfeng, Vasileva Ana, Zavodszky Maria I, Lo Shih-Ching, Guilmette Edward, Clarner Pete, Liu Bin, Bhat Guruharsha, Suh Junghae, Dow Lukas, Zuber Johannes, Fellmann Christof, Premsrirut Prem K
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 15(1):21419 |
| doi: | 10.1038/s41598-025-07061-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
