BACKGROUND: Accumulating evidence suggests that regulated cell death, such as pyroptosis, apoptosis, and necroptosis, is deeply involved in the pathogenesis of psoriasis. As a newly recognized form of systematic cell death, PANoptosis is involved in a variety of inflammatory disorders through amplifying inflammatory and immune cascades, but its role in psoriasis remains elusive. OBJECTIVES: To reveal the role of PANoptosis in psoriasis for a potential therapeutic strategy. METHODS: Multitranscriptomic analysis and experimental validation were used to identify PANoptosis signaling in psoriasis. RNA-seq and scRNA-seq analyses were performed to establish a PANoptosis-mediated immune response in psoriasis, which revealed hub genes through WGCNA and predicted disulfiram as a potential drug. The effect and mechanism of disulfiram were verified in imiquimod (IMQ)-induced psoriasis. RESULTS: Here, we found a highlighted PANoptosis signature in psoriasis patients through multitranscriptomic analysis and experimental validation. Based on this, two distinct PANoptosis patterns (non/high) were identified, which were the options for clinical classification. The high-PANoptosis-related group had a higher response rate to immune cell infiltration (such as M1 macrophages and keratinocytes). Subsequently, WGCNA showed the hub genes (e.g., S100A12, CYCS, NOD2, STAT1, HSPA4, AIM2, MAPK7), which were significantly associated with clinical phenotype, PANoptosis signature, and identified immune response in psoriasis. Finally, we explored disulfiram (DSF) as a candidate drug for psoriasis through network pharmacology, which ameliorated IMQ-mediated psoriatic symptoms through antipyroptosis-mediated inflammation and enhanced apoptotic progression. By analyzing the specific ligand-receptor interaction pairs within and between cell lineages, we speculated that DSF might exert its effects by targeting keratinocytes directly or targeting M1 macrophages to downregulate the proliferation of keratinocytes. CONCLUSIONS: PANoptosis with its mediated immune cell infiltration provides a roadmap for research on the pathogenesis and therapeutic strategies of psoriasis.
PANoptosis signaling enables broad immune response in psoriasis: From pathogenesis to new therapeutic strategies.
PANoptosis信号传导在银屑病中引发广泛的免疫反应:从发病机制到新的治疗策略
阅读:4
作者:Hu Xi-Min, Zheng Shengyuan, Zhang Qi, Wan Xinxing, Li Ji, Mao Rui, Yang Ronghua, Xiong Kun
| 期刊: | Computational and Structural Biotechnology Journal | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2023 Nov 28; 23:64-76 |
| doi: | 10.1016/j.csbj.2023.11.049 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
