Following dental extraction, alveolar bone loss, driven by the osteoclast (OC) bone-eroding cells, is a relevant concern in dental practice since it could compromise the possibility of installing dental implants. This study aimed to develop a drug delivery system releasing the antiosteoclastogenic molecule gallic acid (GA) at the alveolar bone level to control the dysregulated balance between OCs and bone-building osteoblasts and thus delay bone erosion. We functionalized small blocks of the hydroxyapatite- and β-tricalcium phosphate-based RIGENERA BTK BCP biomaterial with layered double hydroxide (LDH) and GA (RIG_LDH-GA). By the in vitro model of Receptor Activator of Nuclear factor Kappa-ΠLigand (RANKL)-induced osteoclastogenesis in RAW 264.7 macrophages, we demonstrated that the conditioned medium (CM) obtained after 1-day incubation with RIG_LDH-GA contrasts the OC formation in a dose-dependent manner until a complete inhibition at the highest tested dose, while the unfunctionalized control (RIG) is ineffective. TRAP enzyme activity, OC marker gene expression, and bone resorption activity confirmed the antiosteoclastogenic effect of RIG_LDH-GA CM. Moreover, the expression of RANK (the RANKL's receptor), otherwise induced by RANKL treatment, was reduced to the untreated control extent, consistent with the decreased expression of the transcription factors c-Fos and NFATc1, activated downstream in the RANK signaling pathway and inducing RANK itself. Thus, since GA released by the RIG_LDH-GA system effectively exerted an antiosteoclastogenic effect, RIGENERA BTK BCP functionalization with LDH and GA likely appears to be an osteoprotective upgrade of this biomaterial, already possessing bone regenerative properties, and might find successful clinical application in preventing osteoclast-mediated alveolar bone loss.
Gallic acid released by a layered double hydroxide-coated scaffold of hydroxyapatite and β-tricalcium phosphate inhibits the osteoclast formation In Vitro.
由羟基磷灰石和β-磷酸三钙构成的双层氢氧化物涂层支架释放的没食子酸在体外抑制破骨细胞的形成
阅读:9
作者:Suvieri Chiara, Bastianini Maria, Pagano Stefano, Marinucci Lorella, Ambrogi Valeria, Leonardi Leonardo, Conte Carmela, Pallotta Maria Teresa, Fioretti Bernard, Traina Giovanna, Sisani Michele, Belladonna Maria Laura
| 期刊: | Biomaterials and Biosystems | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 20; 19:100119 |
| doi: | 10.1016/j.bbiosy.2025.100119 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
