Rescue of Scn5a mis-splicing does not improve the structural and functional heart defects of a DM1 heart mouse model.

纠正 Scn5a 错误剪接并不能改善 DM1 心脏小鼠模型的结构和功能性心脏缺陷

阅读:15
作者:Nitschke Larissa, Hu Rong-Chi, Miller Andrew N, Cooper Thomas A
Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant multisystemic disorder for which cardiac features, including conduction delays and arrhythmias, are the second leading cause of disease mortality. DM1 is caused by expanded CTG repeats in the 3' untranslated region of the DMPK gene. Transcription of the expanded DMPK allele produces mRNAs containing long tracts of CUG repeats, which sequester the Muscleblind-Like family of RNA binding proteins, leading to their loss-of-function and the dysregulation of alternative splicing. A well-characterized mis-regulated splicing event in the DM1 heart is the increased inclusion of SCN5A exon 6A rather than the mutually exclusive exon 6B that normally predominates in adult heart. As previous work showed that forced inclusion of Scn5a exon 6A in mice recapitulates cardiac DM1 phenotypes, we tested whether rescue of Scn5a mis-splicing would improve the cardiac phenotypes in a DM1 heart mouse model. We generated mice lacking Scn5a exon 6A to force the expression of the adult SCN5A isoform including exon 6B and crossed these mice to our previously established CUG960 DM1 heart mouse model. We showed that correction Scn5a mis-splicing does not improve the DM1 heart conduction delays and structural changes induced by CUG repeat RNA expression. Interestingly, we found that in addition to Scn5a mis-splicing, Scn5a expression is reduced in heart tissues of CUG960 mice and DM1-affected individuals. These data indicate that Scn5a mis-splicing is not the sole driver of DM1 heart deficits and suggest a potential role for reduced Scn5a expression in DM1 cardiac disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。