Over the years, various techniques have been utilized to study the function and phenotype of antigen-binding B cells in the primary repertoire following immunization, infection, and development of autoimmunity. Due to the low frequency of antigen-reactive B cells (<0.05% of lymphocytes) in the periphery, preliminary enrichment of cells is necessary to achieve sufficient numbers for statistically sound characterization, especially when downstream analytic platform use, e.g., CyTOF, is low throughput. We previously described a method to detect and enrich antigen-reactive B cells from peripheral blood and tissues using biotinylated antigens in conjunction with magnetic nanoparticles, preparative to a downstream analysis by ELISPOT and flow cytometry. While mass cytometry (CyTOF) enables high dimensional immunophenotyping of over 40 unique parameters on a single-cell level, its low throughput compared to flow cytometry and requirement for removal of metal contaminants, such as nanoparticles, made it particularly unsuitable for studies of rare cells in a mixed population. Here we describe a novel CyTOF-compatible approach for multiplexed enrichment of antigen-reactive B cells, e.g., insulin and tetanus toxoid, using cleavable magnetic nanoparticles. This method allows improved monitoring of the phenotype and function of antigen-reactive B cells during the development of disease or after immunization while minimizing the amount of sample and run times needed.
Enrichment and Detection of Antigen-Binding B Cells for Mass Cytometry.
用于质谱流式细胞术的抗原结合B细胞的富集和检测
阅读:5
作者:Stensland Zachary C, Smith Mia J
| 期刊: | Magnetochemistry | 影响因子: | 2.500 |
| 时间: | 2021 | 起止号: | 2021 Jul |
| doi: | 10.3390/magnetochemistry7070092 | 方法学: | FCM |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
