Plakophilin 3 Is Involved in Basal Body Docking in Multiciliated Cells.

Plakophilin 3 参与多纤毛细胞的基体对接

阅读:10
作者:Louka Panagiota, Kyriakou Chrysovalantou, Diakourti Ioanna, Skourides Paris
Multiciliated cells generate fluid flow along epithelial surfaces, and defects in their development or function cause primary ciliary dyskinesia. The fluid flow is generated by the coordinated beating of motile cilia, which are microtubule-based organelles. The base of each cilium, the basal body, is anchored to the apical cell membrane and surrounded by a dense apical cytoskeleton of actin, microtubules, and intermediate filaments. Several cell adhesion proteins play a role in the connection of the basal body to the apical cytoskeleton. Here, we show that the desmosomal protein plakophilin3, a member of the armadillo family of proteins, localizes to the striated rootlet in Xenopus laevis multiciliated cells. Knockdown of plakophilin 3 leads to significant defects in cilia-generated fluid flow and basal body docking. These defects are cell-autonomous and independent of cell intercalation and gross changes in the actin cytoskeleton. These findings suggest a crucial role for PKP3 in basal body apical migration and docking in multiciliated cells, highlighting a novel connection between desmosomal proteins and ciliary function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。