OBJECTIVE: To investigate the effects of ligustrazine on neuropathic pain (NPP) in rats with sciatic nerve injury and to provide new scientific insight for broadening the clinical application of ligustrazine. METHODS: Human spinal cord cell line STR cells were transfected with TLR4-mimic or mimic negative control (mimic-NC). After transfection, the STR cells were treated with different concentrations of ligustrazine (0, 0.25, 0.5, 1, 2 μm) for 24 h or 48 h. Cell proliferation was detected by MTT assay and colony formation assay. A rat model was further constructed to evaluate mechanical and cold pain sensitivity behaviors by fiber mechanical stimulation and freezing spray. The extracellular fluids of medial prefrontal cortex (mPFC) and central amygdala (CeA) were collected by intracranial dual-site simultaneous microdialysis. The contents of glutamic acid (Glu), aspartate (Asp), glycine (Gly), and γ-aminobutyric acid (GABA) in extracellular fluids were detected by HPLC. RESULTS: Compared to the 0 μm group, ligustrazine concentration at 0.5 μm significantly decreased the relative cell viability of STR cells and promoted the cell apoptosis rate. Ligustrazine at 0.25 μm significantly reduced the colony number of STR cells (all P<0.05). Compared to the control group, 1 μM ligustrazine significantly increased the protein expression of Bax and cleaved caspase 3 in STR cells but decreased the protein expression of Bcl-2 (all P<0.001). Compared to the control group, 2 μM ligustrazine treatments significantly reduced the protein levels of TLR4 and p-Akt in STR cells (all P<0.001). However, 2 μM ligustrazine treatments did not change the protein expression of Akt (P>0.05). Compared to the control group, the level of TLR4 in STR cells transfected with TLR4-mimic was significantly increased (P<0.001). Compared to the control group, transfection of TLR4-mimic reversed the anti-proliferative and pro-apoptotic effects of ligustrazine on STR cells (all P<0.001). CONCLUSION: The analgesic effect of Ligustrazine on neuropathic pain caused by spinal cord injury may be related to its inhibition of the release of excitatory amino acid transmitters Glu and Gly through the TLR4/NF-κB pathway, regulation of the dynamic balance of excitatory and inhibitory amino acid neurotransmitters, and alleviation of the central sensitization effect caused by the excitotoxicity of Glu.
Ligustrazine alleviates spinal cord injury-induced neuropathic pain by inhibiting the TLR4/NF-κB signaling pathway.
川芎嗪通过抑制 TLR4/NF-κB 信号通路来缓解脊髓损伤引起的神经性疼痛
阅读:8
作者:Jin Hong, He Yuhai, Liu Tingting, Yang Tiansong, Sun Xiaowei, Chen Yinghua, Shen Fengyan
| 期刊: | American Journal of Translational Research | 影响因子: | 1.600 |
| 时间: | 2024 | 起止号: | 2024 Aug 15; 16(8):3557-3571 |
| doi: | 10.62347/YXRQ5742 | 研究方向: | 神经科学 |
| 信号通路: | NF-κB | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
