The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in mutations not only in the spike protein, aiding immune evasion, but also in the NSP3/4/6 proteins, crucial for regulating double-membrane vesicle (DMV) formation. However, the functional consequences of these NSP3/4/6 mutations remain poorly understood. In this study, a systematic analysis was conducted to investigate the evolutionary patterns of NSP3/4/6 mutations and their impact on DMV formation. The findings revealed that the NSP4 T492I mutation, a prevalent mutation found in all Delta and Omicron sub-lineages, notably enhances DMV formation. Mechanistically, the NSP4 T492I mutation enhances its homodimerization, leading to an increase in the size of puncta induced by NSP3/4, and also augments endoplasmic reticulum (ER) membrane curvature, resulting in a higher DMV density per fluorescent puncta. This study underscores the significance of the NSP4 T492I mutation in modulating DMV formation, with potential implications for the transmission dynamics of SARS-CoV-2. It contributes valuable insights into how these mutations impact viral replication and pathogenesis.
The SARS-CoV-2 NSP4 T492I mutation promotes double-membrane vesicle formation to facilitate transmission.
SARS-CoV-2 NSP4 T492I 突变促进双层膜囊泡的形成,从而促进病毒传播
阅读:10
作者:Wang Pei, Tian Buyun, Xiao Ke, Ji Wei, Li Zonghong
| 期刊: | Virologica Sinica | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Apr;40(2):225-235 |
| doi: | 10.1016/j.virs.2025.03.010 | 疾病类型: | 新冠 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
