Anti-colorectal cancer effect of total minor ginsenosides produced by lactobacilli transformation of major ginsenosides by inducing apoptosis and regulating gut microbiota.

乳酸杆菌转化主要人参皂苷产生的总次要人参皂苷通过诱导细胞凋亡和调节肠道菌群发挥抗结直肠癌作用

阅读:6
作者:Shen Yunjiao, Gao Yansong, Yang Ge, Zhao Zijian, Zhao Yujuan, Gao Lei, Li Shengyu
OBJECTIVE: Minor ginsenosides have demonstrated promising anticancer effects in previous reports. Total minor ginsenosides (TMG) were obtained through the fermentation of major ginsenosides with Lactiplantibacillus plantarum, and potential anticancer effects of TMGs on the mouse colon cancer cell line CT26.WT, in vitro and in vivo, were investigated. MATERIALS AND METHODS: We employed the Cell Counting Kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL), and Western blot analysis in vitro to explore the anti-proliferative and pro-apoptotic functions of TMG in CT26.WT cells. In vivo, a xenograft model was established by subcutaneously injecting mice with CT26.WT cells and administering a dose of 100 mg/kg/day TMG to the tumor-bearing mice. The level of apoptosis and expression of various proteins in the tumor tissues were detected by immunohistochemistry and Western blot. High-throughput 16S rRNA sequencing was used to determine the alterations in the gut microbiota. RESULTS: In vitro studies demonstrated that TMG significantly inhibited proliferation and promoted apoptosis in CT26.WT cells. Interestingly, TMG induced apoptosis in CT26.WT cells by affecting the Bax/Bcl-2/caspase-3 pathway. Furthermore, the result of the transplanted tumor model indicated that TMG substantially enhanced the activities of Bax and caspase-3, reduced the activity of Bcl-2, and suppressed the expression of Raf/MEK/ERK protein levels. Fecal analysis revealed that TMG reconstructed the gut microbiota in colorectal cancer-affected mice by augmenting the abundance of the advantageous bacterium Lactobacillus and decreasing the abundance of the harmful bacterium Proteus. CONCLUSION: TMG can exhibit potent anti-colorectal cancer effects through diverse apoptotic mechanisms, with their mode of action closely related to the regulation of gut microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。