Exosomal miR‑152‑5p/ARHGAP6/ROCK axis regulates apoptosis and fibrosis in cardiomyocytes.

外泌体 miR'152'5p/ARHGAP6/ROCK 轴调节心肌细胞凋亡和纤维化

阅读:15
作者:Chen Shaoyuan, Huang Yulang, Liu Rongzhi, Lin Zixiang, Huang Bihan, Ai Wen, He Jianjun, Gao Yulan, Xie Peiyi
Acute myocardial infarction (AMI) is a fatal cardiovascular disease with a high mortality rate. The discovery of effective biomarkers is crucial for the diagnosis and treatment of AMI. In the present study, miRNA sequencing and reverse transcription-quantitative polymerase chain reaction techniques revealed that the expression of exosome derived miR-152-5p was significantly downregulated in patients with AMI compared with healthy controls. A series of functional validation experiments were then performed using H9c2 cardiomyocytes. Following transfection of the cardiomyocytes using an miR-152-5p inhibitor, immunofluorescence staining of a-smooth muscle actin revealed a marked increase in fibrosis. Western blotting revealed that the expression levels of the apoptotic protein Bax, TNF-α and collagen-associated proteins were significantly increased, whereas those of the apoptosis-inhibiting factor Bcl-2 and vascular endothelial growth factor A were significantly decreased. Furthermore, the binding of Rho GTPase-activating protein 6 (ARHGAP6) to miR-152-5p was predicted using an online database and verified using a dual-luciferase reporter gene assay. The transfection of cardiomyocytes with miR-152-5p mimics was found to inhibit the activation of ARHGAP6 and Rho-associated coiled-coil containing kinase 2 (ROCK2). These results suggest that miR-152-5p targets ARHGAP6 through the ROCK signaling pathway to inhibit AMI, which implies that miR-152-5p may be a diagnostic indicator and potential target for treatment of myocardial infarction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。