Hnf4α integrates AIF and caspase 3/9 signaling to restrict single and coinfecting pathogens in teleosts.

Hnf4α整合AIF和caspase 3/9信号,以限制硬骨鱼中的单一和共感染病原体

阅读:5
作者:Yan Dong, Tao Min Hui, Wu Xiao Man, Zhang Jie, Li Ming, Chang Ming Xian
Hepatocyte nuclear factor 4 alpha (Hnf4α), a conserved nuclear receptor central to vertebrate liver development and metabolic regulation, emerges here as a pivotal immune regulator in teleosts against complex infectious threats. While its metabolic roles are well-established, Hnf4α's function in bacterial infection, viral infection, and bacterial-viral coinfection-major challenges in global aquaculture-remained uncharacterized. This study reveals that teleost Hnf4α acts as a dual-functional immune checkpoint, essential for combating Aeromonas salmonicida, grass carp reovirus (GCRV), and their coinfection. In in vivo zebrafish models, hnf4α-deficient larvae showed profound susceptibility, with survival rates reduced by 13.33-40% during infections, whereas gcHnf4α overexpression enhanced larval survival by 17.78-23.33% in single or coinfection scenarios. In vitro analyses in CIK cells demonstrated that gcHnf4α restricts A. salmonicida proliferation and GCRV replication through activation of a mitochondrial apoptotic program. Mechanistically, gcHnf4α forms a nuclear signaling complex with apoptosis-inducing factor (AIF) and caspases 3/9, driving a dual-dependent apoptotic pathway: (1) AIF-mediated caspase-independent nuclear apoptotic processes and (2) caspase 3/9-dependent cytoplasmic apoptotic execution. Confocal microscopy and co-immunoprecipitation validated direct interactions between gcHnf4α and these apoptotic effectors. Pharmacological inhibition of caspases 3/9 or AIF silencing abrogated gcHnf4α's protective effects, while ectopic caspase expression rescued survival deficits in hnf4α-deficient larvae. These findings establish Hnf4α as a conserved molecular nexus linking nuclear receptor signaling to apoptotic immunity, offering a novel strategy for aquacultural disease control. By targeting the AIF-caspase axis, Hnf4α enables efficient pathogen elimination, delineating it as a promising target for developing dual-action immunomodulators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。