Congenital cataracts account for approximately 5-20% of childhood blindness worldwide and 22-30% of childhood blindness in developing countries. Genetic disorders are the primary cause of congenital cataracts. In this work, we investigated the underlying molecular mechanism of G149V point missense mutation in βB2-crystallin, which was first identified in a three-generation Chinese family with two affected members diagnosed with congenital cataracts. Spectroscopic experiments were performed to determine the structural differences between the wild type (WT) and the G149V mutant of βB2-crystallin. The results showed that the G149V mutation significantly changed the secondary and tertiary structure of βB2-crystallin. The polarity of the tryptophan microenvironment and the hydrophobicity of the mutant protein increased. The G149V mutation made the protein structure loose and the interaction between oligomers was reduced, which decreased the stability of the protein. Furthermore, we compared βB2-crystallin WT and the G149V mutant with their biophysical properties under environmental stress. We found that the G149V mutation makes βB2-crystallin more sensitive to environmental stresses (oxidative stress, UV irradiation, and heat shock) and more likely to aggregate and form precipitation. These features might be important to the pathogenesis of βB2-crystallin G149V mutant related to congenital cataracts.
Insight into Pathogenic Mechanism Underlying the Hereditary Cataract Caused by βB2-G149V Mutation.
深入了解由β2-G149V突变引起的遗传性白内障的致病机制
阅读:9
作者:Wu Jing, Chen Silong, Xu Jingjie, Xu Wanyue, Zheng Sifan, Tian Qing, Luo Chenqi, Chen Xiangjun, Shentu Xingchao
| 期刊: | Biomolecules | 影响因子: | 4.800 |
| 时间: | 2023 | 起止号: | 2023 May 19; 13(5):864 |
| doi: | 10.3390/biom13050864 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
