Metabolic consequences of skeletal muscle- and liver-specific BBSome deficiency.

骨骼肌和肝脏特异性 BBSome 缺乏的代谢后果

阅读:4
作者:Rouabhi Younes, Guo Deng-Fu, Zhao Yuying, Rahmouni Kamal
The BBSome is a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1. Humans and mice lacking a functional BBSome display obesity and type 2 diabetes, highlighting the importance of this protein complex for metabolic regulation. However, the contribution of the BBSome in insulin-sensitive tissues such as skeletal muscle and liver to metabolic regulation is ill-defined. Here, we show that disruption of the BBSome through Bbs1 gene deletion in the skeletal muscle had no effect on body weight or glucose handling, but improved insulin sensitivity of female mice without changing insulin receptor signaling. Interestingly, when fed an obesogenic diet, male mice lacking the Bbs1 gene in skeletal muscle exhibited heightened insulin sensitivity despite the comparable weight gain and glucose tolerance relative to controls. On the other hand, normal chow-fed mice missing the Bbs1 gene in hepatocytes displayed increased body weight, as well as impaired glucose handling and insulin sensitivity. This was associated with attenuated insulin signaling in liver and hepatocytes, but not skeletal muscle and white adipose tissue. Moreover, hepatocytes lacking the Bbs1 gene displayed significant reduction in plasma membrane insulin receptor levels due to the mitochondrial dysfunction evoked by loss of the BBSome. Together, these findings demonstrate that myocyte BBSome is minimally involved in metabolic regulation, whereas the hepatic BBSome plays a critical role in the control of energy homeostasis and insulin sensitivity through its requirement for insulin receptor trafficking.NEW & NOTEWORTHY The ongoing epidemic of obesity and associated illnesses highlights the need to understand the biological processes that regulate energy balance. Here, we identified an important role for a protein complex called BBSome in the control of hepatic function. We show that the liver BBSome is necessary to maintain body weight and blood glucose levels due to its requirements to generate energy and detect insulin, a hormone that is essential for metabolic regulation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。