Macroautophagy deploys a wealth of autophagy-related proteins to synthesize the double-membrane autophagosome, in order to engulf cytosolic components for lysosome-dependent degradation. The recruitment of the ATG12~ATG5-ATG16L1 complex by WIPI family proteins is a crucial step in autophagosome formation. Nevertheless, the molecular mechanism by which WIPI3 facilitates the recruitment of the ATG12~ATG5-ATG16L1 complex remains largely unknown. Here, we uncover that WIPI3 can directly interact with the coiled-coil domain of ATG16L1. By determining the crystal structure of WIPI3 in complex with ATG16L1 coiled-coil, we elucidate the molecular basis underpinning the specific recruitment of the ATG12~ATG5-ATG16L1 complex by WIPI3. Moreover, we demonstrate that WIPI2 and WIPI3 are competitive for interacting with ATG16L1 coiled-coil, and ATG16L1 and ATG2 are mutually exclusive in binding to WIPI3. In all, our findings provide mechanistic insights into the WIPI3/ATG16L1 interaction, and are valuable for further understanding the activation mechanism of the ATG12~ATG5-ATG16L1 complex as well as the working mode of WIPI3 in autophagy.
Structure of the WIPI3/ATG16L1 Complex Reveals the Molecular Basis for the Recruitment of the ATG12~ATG5-ATG16L1 Complex by WIPI3.
WIPI3/ATG16L1复合物的结构揭示了WIPI3募集ATG12~ATG5-ATG16L1复合物的分子基础
阅读:4
作者:Gong Xinyu, Wang Yingli, Zhou Yuqian, Pan Lifeng
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2024 | 起止号: | 2024 Dec 20; 13(24):2113 |
| doi: | 10.3390/cells13242113 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
