Intracerebral hemorrhage (ICH) is a highly fatal form of stroke for which there are limited effective treatments. Cuproptosis, a newly discovered type of programmed cell death, has not yet been investigated in relation to ICH. Thus, the main goal of our study was to investigate the involvement of cuproptosis-related genes (CRGs) in predicting the early outcomes of ICH. We used datasets GSE228222 and GSE200575 from the Gene Expression Omnibus (GEO) database to identify and analyze differentially expressed genes (DEGs) between ICH samples and control samples from mice. From this analysis, seven cuproptosis-related DEGs (CuDEGs) were identified: pyruvate dehydrogenase E1 component subunit alpha (Pdha1), glutaminase (Gls), dihydrolipoamide dehydrogenase (Dld), pyruvate dehydrogenase E1 component subunit beta (Pdhb), dihydrolipoamide S-acetyltransferase (Dlat), metal regulatory transcription factor 1(Mtf1), and solute carrier family 31 member 1 (Slc31a1). Pathway enrichment analysis connected these genes to metabolic pathways, while immune cell infiltration analysis revealed increased macrophages and naive CD8 T cells alongside reduced NK resting cells and CD4 T cells in ICH samples. Verification through qRT-PCR and immunohistochemistry demonstrated a lower expression of CuDEGs in ICH samples. Of particular note, Gls, a gene significantly linked to both cuproptosis and immune regulation, exhibited reduced expression, possibly reflecting a protective response to limit glutamate production and mitigate neuronal damage. In summary, Gls emerges as a promising target for improving ICH outcomes by regulating cuproptosis and immune activity. This research provides novel insights into the molecular processes involved in ICH and suggests potential therapeutic approaches.
Prognostic Role of Cuproptosis-Related Gene after Intracerebral Hemorrhage in Mice.
铜凋亡相关基因在小鼠脑出血后的预后作用
阅读:23
作者:Shen Xi, Zhu Jiandong, Gu Yuhang, Lu Jinxin, Zhai Weiwei, Sun Liang, Wu Jiang, Yu Zhengquan
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 May 22; 45(1):48 |
| doi: | 10.1007/s10571-025-01571-z | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
