CD133+CD24+ Renal Tubular Progenitor Cells Drive Hypoxic Injury Recovery via Hypoxia-Inducible Factor-1A and Epidermal Growth Factor Receptor Expression.

CD133+CD24+肾小管祖细胞通过缺氧诱导因子-1A和表皮生长因子受体表达驱动缺氧损伤恢复

阅读:23
作者:Al-Marsoummi Sarmad, Singhal Sonalika, Garrett Scott H, Somji Seema, Sens Donald A, Singhal Sandeep K
CD133+CD24+ renal tubular progenitor cells play a crucial role in the repair and regeneration of renal tubules after acute kidney injury. The aim of this study is to investigate the responses of the human renal tubular precursor TERT (HRTPT) CD133+CD24+ cells and human renal epithelial cell 24 TERT (HREC24T) CD133-CD24+ cells to hypoxic stress, as well as their gene expression profiles. Whole transcriptome sequencing and functional network analysis identified distinct molecular characteristics of HRTPT cells as they were enriched with hypoxia-inducible factor-1A (HIF1A), epidermal growth factor (EGF), and endothelin-1 (EDN1). Our in vitro experiments demonstrated that, under hypoxia (2.5% oxygen), HRTPT cells showed minimal cell death and a 100-fold increase in HIF1A protein levels. In contrast, HREC24T cells exhibited significant cell death and only a two-fold increase in HIF1A protein level. These results indicate that CD133+CD24+ renal tubular progenitor cells have enhanced survival mechanisms under hypoxic stress, enabling them to survive and proliferate to replace damaged tubular cells. This study provides novel insights into the protective role of CD133+CD24+ renal tubular progenitor cells in hypoxic renal injury and identifies their potential survival mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。