Cancer stem cells (CSCs) play a central role in melanoma growth, resistance to treatment, and relapse, however, their dynamic regulatory behavior remains poorly understood. Vibrational spectroscopy offers a unique, label-free approach to investigate cellular heterogeneity at the molecular level. Here, we explored the biochemical and regulatory dynamics of CSCs identified by using a time-course design, integrating infrared and Raman spectroscopies with cell cycle analysis and immunocytochemistry targeting the checkpoint proteins p16 and p21. CSCs, non-cancer stem cells (NCSCs), and bulk CHL-1 melanoma cells were monitored at 11, 24, 48, and 72Â h. CSCs showed a steady S-phase with an early rise in p16 followed by a subsequent increase in p21 expression, indicating a dynamic state of cell cycle checkpoints. In contrast, NCSCs and CHL-1 cells showed more transient p16/p21 expression and CHL-1 exhibited a marked p16 increase at 24Â h. Spectroscopic analysis revealed that CSCs exhibited distinct vibrational profiles, predominantly in the nucleic acid-, protein- and lipid-associated regions. These differences were further supported by principal component and hierarchical clustering analyses, which consistently distinguished CSCs from NCSCs. Our findings underline the potential of vibrational spectroscopy to sensitively detect CSC-specific regulatory patterns and support its use in detecting new therapeutic targets in melanoma.
Vibrational spectroscopy unveils distinct cell cycle features of cancer stem cells in melanoma.
振动光谱揭示了黑色素瘤中癌干细胞独特的细胞周期特征
阅读:5
作者:Uslu Bensu Rüya, Ozdil Berrin, Tarhan Enver, Ãzçelik Serdar, AktuÄ Hüseyin, Güler Günnur
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 15(1):28494 |
| doi: | 10.1038/s41598-025-14018-8 | 研究方向: | 发育与干细胞、细胞生物学 |
| 疾病类型: | 黑色素瘤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
