Pathway sensor-based functional genomics screening identifies modulators of neuronal activity.

基于通路传感器的功能基因组学筛选可识别神经元活动的调节因子

阅读:4
作者:Herholt Alexander, Brankatschk Ben, Kannaiyan Nirmal, Papiol Sergi, Wichert Sven P, Wehr Michael C, Rossner Moritz J
Neuronal signal transduction shapes brain function and malfunction may cause mental disorders. Despite the existence of functional genomics screens for proliferation and toxicity, neuronal signalling has been difficult to address so far. To overcome this limitation, we developed a pooled screening assay which combines barcoded activity reporters with pooled genetic perturbation in a dual-expression adeno-associated virus (AAV) library. With this approach, termed pathScreener, we comprehensively dissect signalling pathways in postmitotic neurons. This overcomes several limitations of lentiviral-based screens. By applying first a barcoded and multiplexed reporter assay, termed cisProfiler, we identified the synaptic-activity responsive element (SARE) as top performance sensor of neuronal activity. Next, we targeted more than 4,400 genes and screened for modulatory effects on SARE activity in primary cortical neurons. We identified with high replicability many known genes involved in glutamatergic synapse-to-nucleus signalling of which a subset was validated in orthogonal assays. Several others have not yet been associated with the regulation of neuronal activity such as the hedgehog signalling members Ptch2 and Ift57. This assay thus enhances the toolbox for analysing regulatory processes during neuronal signalling and may help identifying novel targets for brain disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。