Brain organoid technology has revolutionized the ability to model human neurodevelopment in vitro. However, current techniques remain limited by their reliance on simplified endothelial cell populations. Multi-Region Brain Organoids (MRBOs) are engineered that integrate cerebral, mid/hindbrain, and complex endothelial organoids into one structure. Unlike earlier approaches based on isolated Human Umbilical Vein Endothelial Cells, the endothelial organoids contain diverse vascular cell types, including progenitors, mature endothelial cells, pericytes, proliferating angiogenic cells, and stromal cells. The strategy employs sequential modulation of key developmental pathways to generate individual organoids, followed by optimized fusion conditions that maintain regional identities while supporting cellular integration. Single-nucleus RNA sequencing reveals that MRBOs develop discrete neural populations specific to each brain region alongside specialized endothelial populations that establish paracrine signaling networks. Integration analysis with human fetal brain data shows that MRBOs contribute to 80% of cellular clusters found in human fetal brain tissue (Carnegie stages 12-16). CellChat analysis identifies 13 previously uncharacterized endothelial-neural signaling interactions. Endothelial-derived factors are uncovered that support intermediate progenitor populations during hindbrain development, but not cerebral development, revealing a role for endothelial populations in regional brain patterning. This platform enables matching of multiple developmental regions while incorporating endothelial components, providing opportunities for studying neurodevelopmental disorders with disrupted neural-endothelial interactions.
Multi-Region Brain Organoids Integrating Cerebral, Mid-Hindbrain, and Endothelial Systems.
整合大脑、中脑-后脑和内皮系统的多区域脑类器官
阅读:4
作者:Kshirsagar Anannya, Mnatsakanyan Hayk, Kulkarni Sai, Guo John, Cheng Kai, Ofria Luke Daniel, Bohra Oce, Sagar Ram, Mahairaki Vasiliki, Badr Christian E, Kathuria Annie
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Sep;12(33):e03768 |
| doi: | 10.1002/advs.202503768 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
