The spatial transcriptome of the late-stage embryonic and postnatal mouse brain reveals spatiotemporal molecular markers.

小鼠胚胎晚期和出生后大脑的空间转录组揭示了时空分子标记

阅读:7
作者:Hara Yuichiro, Kumamoto Takuma, Yoshizawa-Sugata Naoko, Hirai Kumiko, Song Xianghe, Kawaji Hideya, Ohtaka-Maruyama Chiaki
The neocortical development process includes cell proliferation, differentiation, migration, and maturation, supported by precise genetic regulation. To understand these processes at the cellular and molecular levels, it is necessary to characterize the fundamental anatomical structures by gene expression. However, markers established in the adult brain sometimes behave differently in the fetal brain, actively changing during development. The spatial transcriptome is a powerful analytical method that enables sequence analysis while retaining spatial information. However, a deeper understanding of these data requires computational estimation, including integration with single-cell transcriptome data and aggregation of spots at the single-cell cluster level. The application of such analysis to biomarker discovery has only begun recently, and its application to the developing fetal brain is largely unexplored. In this study, we performed a spatial transcriptome analysis of the developing mouse brain to investigate spatio-temporal regulation of gene expression during development. Using these data, we conducted an integrated study with publicly available mouse data sets. Our data-driven analysis identified novel molecular markers of the choroid plexus, piriform cortex, and thalamus. Furthermore, we identified a novel molecular marker that can determine the dorsal endopiriform nucleus (DEn) of the developmental stage in the claustrum/DEn complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。