A soft-stiff patterned bioengineering model reveals kinase pathways driving directional cell migration in pulmonary arterial hypertension.

软硬模式生物工程模型揭示了驱动肺动脉高压中定向细胞迁移的激酶通路

阅读:6
作者:Islam Tamanna, Hooper Jacob, Zhang Xiaojun, Garcia Clarissa, Hasan Md Mahedi, Drewry David H, Hossain Mohammad Anwar, Al-Hilal Taslim A
Directional cell migration by pulmonary arterial cells (PACs) is one of the important features of diseases involving arterial remodeling, such as pulmonary arterial hypertension (PAH), a disease that is often characterized by reduced arterial compliance and increased extracellular matrix (ECM) stiffening. However, there are no therapeutics that can halt the directional cell migration of PACs in PAH. The inability to identify drug targets or drugs against the directional cell migration during PAH pathogenesis stems from an incomplete understanding of the process and a lack of effective translational models for screening of candidate small molecules. Here, for the first time, we introduce a bioengineered platform suitable for screening small molecule inhibitors targeting kinase pathways that are potentially linked to ECM-mediated directed cell migration in PAH. We used a photolithographic technique to develop mechanically patterned hydrogels with alternative stripes of soft and stiff bars representing the alternating stiffness regions of PAH ECM. Employing our bioengineered platform, we demonstrated the directional cell migration capacity of PACs and found that PAH-smooth muscle cells (SMCs) showed the highest ability to migrate from soft-stiff regions. Screening of different kinase inhibitors identified the role of JAK/STAT as a mechanosensor in the PAH-SMC-specific directional cell migration. Our study highlighted the use of a mechanically patterned bioengineering platform to identify new drug targets specific to the machinery involved in directional cell migration in PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。