Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs. Functionally, PLPs do not aggregate following epinephrine, collagen, or ADP stimulation. While PLPs aggregated in response to thrombin, they did not display enhanced expression of surface markers P-selectin and activated α(2b)β(3), in contrast to platelets. We have previously demonstrated that platelets physically couple to MDA-PCa-2b and RC77T/E prostate cancer (PCa) cells via specific ligand-receptor interactions, leading to platelet-stimulated cell invasiveness and apoptotic resistance, and reciprocal cell-induced platelet aggregation. In contrast, PLP interactions with PCa cells inhibited both cell invasion and apoptotic resistance while failing to promote PLP aggregation. Moreover, PLPs reduced platelet-PCa cell interactions and antagonized platelet-stimulated oncogenic effects in PCa cells. RNA-Seq analysis identified candidate ligand-transmembrane protein combinations involved in anti-tumorigenic signaling of PLPs to PCa cells. Antibody neutralization of the TIMP3-MMP15 and VEGFB-FGFR1 signaling axes reversed PLP-mediated anti-invasion and apoptotic sensitization, respectively. In summary, PLPs lack many transcriptomic, molecular and functional features of platelets and possess novel anti-tumorigenic properties. These findings indicate that PLPs may have a potential therapeutic role in targeting and disrupting the oncogenic signaling between platelets and cancer cells, offering a new avenue for anti-cancer strategies.
Transcriptomic and functional characterization of megakaryocytic-derived platelet-like particles: impaired aggregation and prominent anti-tumor effects.
巨核细胞衍生血小板样颗粒的转录组学和功能表征:聚集受损和显著的抗肿瘤作用
阅读:11
作者:Garofano Kaitlin, Mariani Vera, Rashid Kameron, Suwunnakorn Sumanun, Sidahmed Alfateh, Horvath Anelia, Maggirwar Sanjay B, O'Brien Travis J, Perera Minoli A, Whalen Michael, Lee Norman H
| 期刊: | Platelets | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Dec;36(1):2449344 |
| doi: | 10.1080/09537104.2024.2449344 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
