Peroxisome proliferator-activated receptors (PPARs) modulate bile metabolism and are important therapeutic options in cholestatic diseases. This study was aimed at understanding the effects of single and multiple doses of seladelpar, a PPARδ (peroxisome proliferator-activated receptor delta) agonist, on plasma C4 (a freely diffusible metabolite accepted as a proxy for de novo bile acid biosynthesis), Fibroblast Growth Factor 21 (Fgf21), and gene expression changes in the liver of male and female mice. C57BL/6 mice were treated with seladelpar 10âmg/kg/day or vehicle through oral gavage before lights out on Day 1 (single dose) or from Day 1 to Day 7 (multiple doses). Liver samples were obtained at 0, 1, 2, 4, 8, 12, 16, and 24âh postdosing, and plasma C4 and Fgf21 levels were measured. In vehicle-treated mice, C4 levels were higher in the dark cycle compared to the light cycle, with higher levels in females than in males. Plasma Fgf21 did not vary substantially over the dark-light cycle or show a sex-specific expression pattern. Seladelpar treatment significantly reduced plasma C4 and increased Fgf21 levels in both sexes, which coincided with a decrease in cholesterol 7α-hydroxylase mRNA and an increase in Fgf21 mRNA in the livers. Untargeted RNA sequencing revealed a strong correlation between the genes differentially expressed after single- and multiple-dose seladelpar treatment. PPAR-responsive genes, including pyruvate dehydrogenase kinase 4, acyl-CoA thioesterase 2, and angiopoietin-like 4, were upregulated. No changes in nuclear receptors, clock genes, and sex-specific genes were observed. Overall, these results are consistent with a model where seladelpar treatment reduces bile acid synthesis by upregulating Fgf21 and modulating other PPAR-responsive genes.
Single and Multiple Doses of Seladelpar Decrease Diurnal Markers of Bile Acid Synthesis in Mice.
单次和多次服用塞拉德帕可降低小鼠胆汁酸合成的昼夜节律指标
阅读:5
作者:Cable Edward E, Stebbins Jeffrey W, Johnson Jeff D, Choi Yun-Jung, Song Jiangao, Gatto Sole, Onorato Matthew, McWherter Charles A
| 期刊: | PPAR Research | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 11; 2025:5423221 |
| doi: | 10.1155/ppar/5423221 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
