Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.
Interleukin-34 permits Porphyromonas gingivalis survival and NF-κB p65 inhibition in macrophages.
白细胞介素-34 可使牙龈卟啉单胞菌在巨噬细胞中存活并抑制 NF-κB p65
阅读:4
作者:Almarghlani Ammar, Settem Rajendra P, Croft Andrew J, Metcalfe Sarah, Giangreco Matthew, Kay Jason G
| 期刊: | Molecular Oral Microbiology | 影响因子: | 2.900 |
| 时间: | 2022 | 起止号: | 2022 Jun;37(3):109-121 |
| doi: | 10.1111/omi.12366 | 研究方向: | 细胞生物学 |
| 信号通路: | NF-κB | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
