Sphingosine-1-phosphate (S1P), a bioactive lipid, is a potent candidate for treatment of ischemic vascular disease. However, designing biomaterial systems for the controlled release of S1P to achieve therapeutic angiogenesis presents both biological and engineering challenges. Thus, the objective of this study was to design a hydrogel system that provides controlled and sustained release of S1P to establish local concentration gradients that promote neovascularization. Alginate hydrogels have been extensively studied and characterized for delivery of proangiogenic factors. We sought to explore if chitosan (0, 0.1, 0.5, or 1%) incorporation could be used as a means to control S1P release from alginate hydrogels. With increasing chitosan incorporation, hydrogels exhibited significantly denser pore structure and stiffer material properties. While 0.1 and 0.5% chitosan gels demonstrated slower respective release of S1P, release from 1% chitosan gels was similar to alginate gels alone. Furthermore, 0.5% chitosan gels induced greater sprouting and directed migration of outgrowth endothelial cells (OECs) in response to released S1P under hypoxia in vitro. Overall, this report presents a platform for a novel alginate-chitosan hydrogel of controlled composition and in situ gelation properties that can be used to control lipid release for therapeutic applications.
Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis.
海藻酸盐-壳聚糖水凝胶可提供持续的鞘氨醇-1-磷酸梯度,用于治疗性血管生成
阅读:5
作者:Williams Priscilla A, Campbell Kevin T, Gharaviram Hessam, Madrigal Justin L, Silva Eduardo A
| 期刊: | Annals of Biomedical Engineering | 影响因子: | 5.400 |
| 时间: | 2017 | 起止号: | 2017 Apr;45(4):1003-1014 |
| doi: | 10.1007/s10439-016-1768-2 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
