Injectable Genetic Engineering Hydrogel for Promoting Spatial Tolerance of Transplanted Kidney in Situ.

用于促进移植肾脏原位空间耐受性的可注射基因工程水凝胶

阅读:5
作者:Lin Jinwen, Liu Shuaihui, Xue Xing, Lv Junhao, Zhao Lingfei, Yu Liqin, Wang Huiping, Chen Jianghua
The establishment of a tolerant space to realize the co-stimulation of cytokines and contact-dependent molecules remain challenging in allotransplant. Here, an injectable genetically engineered hydrogel (iGE-Gel) is reported, which developed with a multivalent network of FOXP3 engineered extracellular vesicles (Foe-EVs) through the hydrophobic interaction between stearic acid modified hyaluronic acid (HASA) and the membrane phospholipids of extracellular vesicles (EVs). The iGE-Gel exhibited self-healing properties, injectability and biocompatibility. It is revealed that iGE-Gel displayed with abundant regulatory cytokines and coinhibitory contact molecules, promoting the formation of immune tolerance in situ. The multiplex immunohistofluorescence confirmed tolerant niches is dominated by FOXP3(+) Tregs and PDL1(+) cells in the allograft, which reduced the drainage of alloantigens to subcapsular sinus of lymph nodes, and suppressed the formation of germinal centers. Remarkably, the proportion of alloreactive T cells (IFN-γ/IL-2) and B cells (IgG1/IgG2a/IgG3) as well as the serum titers of donor specific antibody (DSA) is decreased by iGE-Gel. In murine allogeneic transplantation, the injection of iGE-Gel significantly alleviated immune cell infiltration and complement damage in the graft, preserved the structure and function of renal cells and prolonged recipient survival period from 30.8 to 79.3 days, highlighting the potential of iGE-Gel as a transformative treatment in allotransplant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。