Changes in the soluble mucosal immune environment during genital herpes outbreaks.

生殖器疱疹爆发期间可溶性粘膜免疫环境的变化

阅读:6
作者:Keller Marla J, Madan Rebecca P, Shust Gail, Carpenter Colleen A, Torres N Merna, Cho Sylvia, Khine Hnin, Huang Meei-Li, Corey Lawrence, Kim Mimi, Herold Betsy C
BACKGROUND: Genital tract secretions provide variable inhibitory activity against herpes simplex virus (HSV) ex vivo. We hypothesize that the anti-HSV activity may prevent the spread of virus from the more commonly affected sites, such as the external genitalia, to the upper genital tract. METHODS: The antimicrobial activity of cervicovaginal lavage (CVL) and concentrations of mucosal immune mediators were measured in 10 HIV-seronegative women with an active external herpetic lesion and compared with 10 HIV-seronegative women who were HSV-1 and HSV-2 seronegative. Samples were obtained at the time of a symptomatic external lesion (day 0), after 1 week of oral acyclovir (day 7), and 1 week after completing treatment (day 14). Controls were evaluated at parallel intervals. RESULTS: The anti-HSV activity was higher in CVL obtained from cases compared to controls at presentation (day 0) (54.3% vs. 28%), fell to similar levels on day 7, and then rebounded on day 14 (69% vs. 25%). The anti-HSV activity correlated positively and significantly with the concentrations of several inflammatory proteins; the concentrations of these proteins tended to be higher in cases compared with controls and followed a similar temporal pattern. CONCLUSIONS: Increases in inflammatory immune mediators and anti-HSV activity were detected in CVL at the time of clinical outbreaks and after completion of a short course of acyclovir. These mucosal responses may protect against HSV spread but could facilitate HIV infection and contribute to the clinical observation that, independent of clinical lesions, HSV-2 is a risk factor for HIV acquisition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。