BACKGROUNDReversal reactions (RRs) in leprosy are acute immune episodes marked by inflammation and bacterial clearance, offering a model to study the dynamics of host responses to Mycobacterium leprae. These episodes are often severe and difficult to treat, frequently progressing to permanent disabilities. We aimed to characterize the immune mechanisms and identify antimicrobial effectors during RRs.METHODSWe performed RNA-Seq on paired skin biopsy specimens collected from 9 patients with leprosy before and at RR diagnosis, followed by differential gene expression and functional analysis. A machine-learning classifier was applied to predict membrane-permeabilizing proteins. Antimicrobial activity was assessed in M. leprae-infected macrophages and axenic cultures.RESULTSIn the paired pre-RR and RR biopsy specimens, a 64-gene antimicrobial response signature was upregulated during RR and correlated with reduced M. leprae burden. Predicted upstream regulators included IL-1β, TNF, IFN-γ, and IL-17, indicating activation of both the Th1 and Th17 pathways. A machine-learning classifier identified 28 genes with predicted membrane-permeabilizing antimicrobial activity, including S100A8. Four proteins (S100A7, S100A8, CCL17, and CCL19) demonstrated antimicrobial activity against M. leprae in vitro. Scanning electron microscopy revealed membrane damage in bacteria exposed to these proteins.CONCLUSIONRR is associated with a robust antimicrobial gene program regulated by Th1 and Th17 cytokines. We identified potentially novel host antimicrobial effectors that showed activity against M. leprae, suggesting potential strategies to bolster Th1 and Th17 responses for combating intracellular mycobacterial infections.FUNDINGNIH grants R01 AI022553, R01 AR040312, R01 AR073252, R01 AI166313, R01 AI169526, P50 AR080594, and 4R37 AI052453-21 and National Science Foundation (NSF) grant DMR2325840.
Dynamics of Th1/Th17 responses and antimicrobial pathways in leprosy skin lesions.
麻风皮肤病变中 Th1/Th17 反应和抗菌途径的动态变化
阅读:8
作者:Andrade Priscila R, Ma Feiyang, Lu Jing, de Anda Jaime, Lee Ernest Y, Agak George W, Dobry Craig J, de Andrade Silva Bruno J, Teles Rosane Mb, Mansky Lilah A, Perrie Jonathan, Montoya Dennis J, Bryson Bryan D, Gudjonsson Johann E, Wong Gerard Cl, Sarno Euzenir N, Pellegrini Matteo, Modlin Robert L
| 期刊: | Journal of Clinical Investigation | 影响因子: | 13.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 26; 135(17):e190736 |
| doi: | 10.1172/JCI190736 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
