Mechanical forces are a critical stimulus in both native and engineered tissues. Direct measurement of these microenvironmental forces has been challenging, particularly for cell-dense models. To address this, we previously developed hydrogel-based force sensors that are approximately the size of a cell and can be imaged over time to computationally assess the forces exerted by surrounding cells and matrix. The goal of this project was to identify how the physical characteristics of force sensors impact measurements. Sensors were varied in size, elastic modulus, and surface coating before being included in stem cell suspensions that then spontaneously self-assembled into spheroidal neotissues. Using this model of early mesenchymal condensation, we hypothesized that larger, softer sensors would provide greater sensitivity and precision, whereas protein coatings would influence the directionality of applied forces (tensile vs. compressive). These experiments were conducted using a high-content imaging system that allowed analysis of over a thousand sensors to evaluate the various conditions. Results indicated that measurement fidelity was highest for force sensors that had a diameter >20 µm and modulus â¼0.2 kPa. Extremely soft sensors deformed too much, whereas stiffer sensors deformed too little. Collagen and N-cadherin coatings, which replicated cell-matrix or cell-cell binding, respectively, allowed for tensile forces to be exerted on the sensors, with greater forces being observed for N-cadherin sensors in these highly cellular neotissue constructs. Uncoated sensors were universally compressed due to the lack of cell-sensor adhesion. Disruption of the actin cytoskeleton lessened microenvironmental forces, whereas disruption of microtubules had no measurable effect. Potential future applications of the technology include studies of in situ forces in developing tissues as well as a real-time sensor for monitoring the growth of engineered constructs.
Selection of Force Sensors for In Situ Measurement of Neotissue Microenvironments.
用于原位测量新生组织微环境的力传感器的选择
阅读:7
作者:Rodriguez Navas Marta, Darling Eric M
| 期刊: | Tissue Engineering. Part a | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb;31(3-4):164-173 |
| doi: | 10.1089/ten.tea.2024.0192 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
