Dengue Envelope Protein as a Cytotoxic Factor Inducing Hemorrhage and Endothelial Cell Death in Mice.

登革热包膜蛋白作为细胞毒性因子诱导小鼠出血和内皮细胞死亡

阅读:7
作者:Lien Te-Sheng, Sun Der-Shan, Wu Wen-Sheng, Chang Hsin-Hou
Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral factors responsible for endothelial damage remain unclear. This study examines the role of the DENV envelope protein domain III (EIII) in inducing endothelial apoptosis using a mouse model. Additionally, we aim to explore whether cell death-inducing pathways could serve as drug targets to ameliorate EIII-induced endothelial injury and hemorrhage. In vitro experiments using human endothelial HMEC-1 cells demonstrated that both recombinant EIII (rEIII) and DENV markedly induced caspase-3-mediated endothelial cell death, an effect that was attenuated by co-treatment with chondroitin sulfate B (CSB), N-acetyl cysteine (NAC), and the caspase-3 inhibitor z-DEVD-FMK. In vivo, sequential injections of rEIII and anti-platelet immunoglobulin in mice, designed to mimic the clinical phase of DHF with peak viremia followed by an increase in DENV-induced Ig, including autoantibodies, revealed that these dual treatments markedly triggered caspase-3-dependent apoptosis in vascular endothelial cells at hemorrhage sites. Treatments with z-DEVD-FMK effectively reduced DHF-like symptoms such as thrombocytopenia, hemorrhage, inflammation, hypercoagulation, and endothelial damage. Additionally, CSB and NAC alleviated hemorrhagic symptoms in the mice. These results suggest that targeting EIII, reactive oxygen species, and caspase-3-mediated apoptosis could offer potential therapeutic strategies for addressing EIII-induced hemorrhagic pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。