Hepatocellular carcinomas (HCCs) are tumors with a highly developed vascular architecture. HCC cells require access to blood vessels for growth and metastasis; therefore, the inhibition of angiogenesis represents a potential therapeutic target for HCC that may reduce the mortality and morbidity from HCC. Various attempts to develop an anti-angiogenic therapy have been made in past decades; however, modest results have been achieved in clinical trials and the challenge of HCC treatment remains. Single-chain antibodies (scFv) are characterized by low molecular weight, low immunogenicity, high penetration and a short half-life, and are easy to produce on a large scale by genetic engineering. Accordingly, an scFv against a specific angiogenic regulator, such as angiopoietin (Ang), may be a promising anti-angiogenic therapy for HCC. Our previous study indicated that an imbalanced expression of angiopoietin-2 (Ang-2) vs. angiopoietin-1 (Ang-1) in HCCs contributes to initiation of neovascularization and promotes the angiogenesis and progression of HCCs. Therefore, we suggest that specific Ang-2-targeting interventions may be valuable in the treatment of HCC via remodeling the neovascular network and changing the tumor microenvironment. In this study, a prokaryotic expression vector of Ang-2 was constructed and purified human Ang-2 protein was isolated. An scFv against human Ang-2 (scFv-Ang2) was identified and purified via phage display technology, and the effects of scFv-Ang2 in vitro and in vivo on HCC in nude mice were evaluated. The results show that scFv-Ang2 inhibits vascular endothelial growth factor (VEGF) and Ang-2 induces the proliferation, migration and tubule formation of human umbilical vein endothelial cells (HUVECs) in vitro. In the in vivo assay, statistical indices, including tumor weight and volume, metastases to lungs, CD31 expression and the microvessel density (MVD) count in the scFv-Ang2-treated group of mice were significantly lower than those in the control group (P<0.05). In conclusion, the successfully generated scFv-Ang2 showed significant inhibitory effects on the angiogenesis and tumor growth of human HCC in vitro and in vivo.
Suppression of angiogenesis and tumor growth in vitro and in vivo using an anti-angiopoietin-2 single-chain antibody.
利用抗血管生成素-2单链抗体在体外和体内抑制血管生成和肿瘤生长
阅读:4
作者:Zhang Zhong-Lin, Zhang Ji-Fa, Yuan Yu-Feng, He Yue-Ming, Liu Quan-Yan, Mao Xiao-Wen, Ai Yong-Biao, Liu Zhi-Su
| 期刊: | Experimental and Therapeutic Medicine | 影响因子: | 2.300 |
| 时间: | 2014 | 起止号: | 2014 Mar;7(3):543-552 |
| doi: | 10.3892/etm.2014.1476 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
